
Week 4 - Monday

 What did we talk about last time?
 File metadata
 Signals
 Overriding signal handlers

 When using the kill command, the flag can either be the name of
the signal (-KILL) or its number (-9)

 Here are some common signals:
Name Number Description

SIGINT 2 Interrupts the process, generally killing it. Sent with Ctrl-C.

SIGKILL 9 Kills the process. Cannot be ignored or overwritten.

SIGSEGV 11 Sent to a process when it has a segmentation fault.

SIGCHLD 18 Sent to a parent when a child process finishes. Used by wait().

SIGSTOP 23 Suspends the process. Cannot be ignored or overwritten.

SIGTSTP 24 Suspends the process. Sent with Ctrl-Z.

SIGCONT 25 Resumes a suspended process.

 Just as you can use the kill command from the command line, you
can also call the kill() function to send a signal to another
process

 The function takes two parameters:
 PID of the process to kill
 int value giving the signal, usually a named constant

 You can usually only kill processes that you own
 Unless you're a superuser (like root)

kill (pid, SIGSTOP); // Suspends process with pid

 Before we go into IPC, some students have mentioned that
they're a little rusty at C

 One of the biggest differences between C and Java is the use
of pointers

 For that reason, I'm including this short review of pointers

 A pointer is a variable that holds an address
 Often this address is to another variable
 Sometimes it's to a piece of memory that is mapped to file I/O

or something else
 Important operations:
 Reference (&) gets the address of something
 Dereference (*) gets the contents of a pointer

 We typically want a pointer that points to a certain kind of
thing

 To declare a pointer to a particular type

 Example of a pointer with type int:

type * name;

int * pointer;

 A fundamental operation is to find the address of a variable
 This is done with the reference operator (&)

 We usually can't predict what the address of something will be

int value = 5;
int *pointer;
pointer = &value; // pointer has value's address

 The reference operator doesn't let you do much
 You can get an address, but so what?
 Using the dereference operator, you can read and write the

contents of the address

int value = 5;
int* pointer;
pointer = &value;
printf("%d", *pointer); // prints 5
*pointer = 900; // value just changed!

 Java doesn't have pointers
 But it does have references
 Which are basically pointers that you can't do arithmetic on

 Like Java, pointers allow us to do aliasing
 Multiple names for the same thing

int wombat = 10;
int* pointer1;
int* pointer2;
pointer1 = &wombat;
pointer2 = pointer1;
*pointer1 = 7;
printf("%d %d %d", wombat, *pointer1, *pointer2);

 One of the most powerful (and most dangerous) qualities of
pointers in C is that you can take arbitrary offsets in memory

 When you add to (or subtract from) a pointer, it jumps the
number of bytes in memory of the size of the type it points to

int a = 10;
int b = 20;
int c = 30;
int* value = &b;
value++;
printf("%d", *value); // What does it print?

 An array is a pointer
 It is pre-allocated a fixed amount of memory to point to
 You can't make it point at something else

 For this reason, you can assign an array directly to a pointer

int numbers[] = {3, 5, 7, 11, 13};
int* value;

value = numbers;
value = &numbers[0]; // Exactly equivalent

value = &numbers; // What about this?

 Well, no, they aren't
 But you can still use array subscript notation ([]) to read and

write the contents of offsets from an initial pointer

int numbers[] = {3, 5, 7, 11, 13};
int* value = numbers;

printf("%d", value[3]); // prints 11
printf("%d", *(value + 3)); // prints 11
value[4] = 19; // changes 13 to 19

 What if you don't know what you're going to point at?
 You can use a void*, which is an address to…something!
 You have to cast it to another kind of pointer to use it
 You can't do pointer arithmetic on it
 It's not useful very often

char s[] = "Hello World!";
void* address = s;
int* thingy = (int*)address; // Uh-oh
printf("%d\n", *thingy);

 In general, data is passed by value
 This means that a variable cannot be changed for the function

that calls it
 Usually, that's good, since we don't have to worry about

functions screwing up our data
 It's annoying if we need a function to return more than one

thing, though
 Passing a pointer is equivalent to passing the original data by

reference

 Let's imagine a function that can change the values of its
arguments

void swapIfOutOfOrder (int *a, int *b)
{
if (*a > *b)

{
int temp = *a;
*a = *b;
*b = temp;

}
}

 You have to pass the addresses (pointers) of the variables
directly

 With normal parameters, you can pass a variable or a literal
 However, you cannot pass a reference to a literal

int x = 5;
int y = 3;
swapIfOutOfOrder(&x, &y); // Will swap x and y

swapIfOutOfOrder(&5, &3); // Impossible

 Memory can be allocated dynamically using a function called
malloc()
 Similar to using new in Java or C++
 #include <stdlib.h> to use malloc()

 Dynamically allocated memory is on the heap
 It doesn't disappear when a function returns

 To allocate memory, call malloc()with the number of bytes
you want

 It returns a pointer to that memory, which you cast to the
appropriate type

int* data = (int*)malloc(sizeof(int));

 It's common to allocate an array of values dynamically
 The syntax is exactly the same, but you multiply the size of

the type by the number of elements you want

int i = 0;
int *array = (int*)malloc (sizeof(int)*100);
for (i = 0; i < 100; ++i) // Initialize for fun
array[i] = i + 1;

 We can define a pointer to a struct variable
 We can point it at an existing struct
 We can dynamically allocate a struct to point it at

struct student bob;
struct student *studentPointer;
strcpy(bob.name, "Bob Blobberwob");
bob.GPA = 3.7;
bob.ID = 100008;
studentPointer = &bob;
(*studentPointer).GPA = 2.8;
studentPointer = (struct student*)malloc(sizeof(struct
student));

 As we saw on the previous slide, we have to dereference a struct
pointer and then use the dot to access a member

 This is cumbersome and requires parentheses
 Because this is a frequent operation, dereference + dot can be

written as an arrow (->)

struct student* studentPointer = (struct student*)
malloc(sizeof(struct student));

(*studentPointer).ID = 3030;

studentPointer->ID = 3030;

 If you pass a struct directly to a function, you are passing it by
value
 A copy of its contents is made

 It is common to pass a struct by pointer to avoid copying and
so that its members can be changed

void flip (struct point *value)
{

double temp = value->x;
value->x = value->y;
value->y = temp;

}

 One problem with malloc() is that the memory it allocates is filled with
garbage

 Like malloc(), calloc() allocates memory, but it also zeroes all of it
out

 Many programmers think it's safer to use calloc() in all situations
where you would use malloc()

 There's a slight syntax difference:
 calloc() takes two arguments: number of elements and size of each one

// malloc() version
int *array1 = (int*)malloc (sizeof(int)*100);
// equivalent calloc() version
int *array2 = (int*)calloc (100, sizeof(int));

 For a dynamic array, it can be useful to grow an existing chunk of memory if it's
too small

 You could allocate an entirely new, bigger chunk of memory, copy everything
from the old memory over, and then free the old memory
 This is what you have to do in Java

 C provides a slick function, realloc(), that does all of that for you
 Arguments: memory to resize, new size
 Return value: resized memory

if(size == capacity)
{
capacity *= 2;
array = realloc(array, capacity*sizeof(int));

}
array[size] = element;
++size;

 C isn't garbage collected like Java
 If you allocate something on the stack, it disappears when the function

returns
 If you allocate something on the heap, you have to deallocate it with
free()

 free() does not set the pointer to be NULL
 But you can (and should) afterwards

char *things = (char*)malloc (100*sizeof(char));
// Do stuff with things
free(things);
things = NULL;

 We have talked about
 Running processes
 Creating new processes with fork() and exec()
 Destroying processes
 Sending signals to processes

 In general, these processes are separate
 What happens in one process doesn't affect another

 However, there are times when one process needs to
communicate with another

 Interprocess communication (IPC) is an umbrella term for the
different ways these messages can be sent

 There are many IPC approaches, but they can all be
categorized as either message passing or shared memory

 Message passing:
 Sender prepares a message
 Sender makes a system call to request a data transfer
 Kernel copies the message into a buffer
 Receiver makes a system call to retrieve the data
 Receiver copies the message into its own memory

 Shared memory IPC is completely different
 The processes decide on a chunk of virtual memory that will

be used for IPC
 The processes make system calls to request that this memory

is shared
 Once it's shared, processes can read and write from shared

memory just like any other data in the program
 Mediation through the kernel isn't needed after the memory

is shared

 Message passing requires:
 A system call to read
 A system call to write
 Copying the message into kernel memory
 Copying the message into receiver memory

 Thus, sending lots of messages can cause a lot of overhead
 However, sending a small number of messages can be less

expensive than setting up shared memory
 Message passing naturally handles the problem of

synchronization
 Making sure that timing doesn’t corrupt memory

 It's computationally expensive to set up the shared memory
 But that's a one-time cost
 If two processes are sharing lots of messages, it can be more

efficient to use a shared memory system
 Perhaps the more significant problem with shared memory is

synchronization
 Processes reading and writing the same memory can leave the memory in

an inconsistent state
 If one process executes x += 100 while another executes x -= 100,

the result could be the correct x or the incorrect x + 100 or x – 100
 Tools must be used to guarantee synchronization

 Although all IPC techniques fall under the message passing or
the shared memory model, there are other ways to categorize
them:
 For data exchange or purely for synchronization
 As a stream or bytes or data with more structure
 For local communication or for networked communication

 Note: People sometimes use the term "shared memory" to
refer only to the technique using shm_open() and not
memory-mapped files

 Using the categories from the previous slide, we can list all of the IPC techniques that will
be covered in this class

 We talked about signals last week, which are a form of IPC but very limited
 We'll cover sockets when we talk about networking

Technique Model Purpose Granularity Network

Pipe/FIFO Message passing Data exchange Byte stream Local

Socket Message passing Data exchange Either Either

Message queue Message passing Data exchange Structured Local

shm() Shared memory Data exchange None Local

Memory-mapped file Shared memory Data exchange None Local

Signal Message passing Synchronization None Local

Semaphore Message passing Synchronization None Local

 More on IPC
 Pipes
 FIFOs

 Keep working on Project 1
 Due Friday by midnight!

 Read section 3.3

	COMP 3400
	Last time
	Questions?
	Project 1
	Events and Signals
	Common signals
	Sending signals in a program
	Pointers
	Pointers
	Pointers
	Declaration of a pointer
	Reference operator
	Dereference operator
	Aliasing
	Pointer arithmetic
	Arrays are pointers too
	Surprisingly, pointers are arrays too
	void pointers
	Functions that can change arguments
	Example
	How do you call such a function?
	malloc()
	Allocating arrays
	Pointers to structs
	Arrow notation
	Passing structs to functions
	calloc()
	realloc()
	free()
	Interprocess Communication
	Interprocess communication
	Message passing
	Shared memory
	Pros and cons of message passing
	Pros and cons of shared memory
	The IPC zoo
	IPC taxonomy
	Upcoming
	Next time…
	Reminders

