
Week 4 - Monday

 What did we talk about last time?
 File metadata
 Signals
 Overriding signal handlers

 When using the kill command, the flag can either be the name of
the signal (-KILL) or its number (-9)

 Here are some common signals:
Name Number Description

SIGINT 2 Interrupts the process, generally killing it. Sent with Ctrl-C.

SIGKILL 9 Kills the process. Cannot be ignored or overwritten.

SIGSEGV 11 Sent to a process when it has a segmentation fault.

SIGCHLD 18 Sent to a parent when a child process finishes. Used by wait().

SIGSTOP 23 Suspends the process. Cannot be ignored or overwritten.

SIGTSTP 24 Suspends the process. Sent with Ctrl-Z.

SIGCONT 25 Resumes a suspended process.

 Just as you can use the kill command from the command line, you
can also call the kill() function to send a signal to another
process

 The function takes two parameters:
 PID of the process to kill
 int value giving the signal, usually a named constant

 You can usually only kill processes that you own
 Unless you're a superuser (like root)

kill (pid, SIGSTOP); // Suspends process with pid

 Before we go into IPC, some students have mentioned that
they're a little rusty at C

 One of the biggest differences between C and Java is the use
of pointers

 For that reason, I'm including this short review of pointers

 A pointer is a variable that holds an address
 Often this address is to another variable
 Sometimes it's to a piece of memory that is mapped to file I/O

or something else
 Important operations:
 Reference (&) gets the address of something
 Dereference (*) gets the contents of a pointer

 We typically want a pointer that points to a certain kind of
thing

 To declare a pointer to a particular type

 Example of a pointer with type int:

type * name;

int * pointer;

 A fundamental operation is to find the address of a variable
 This is done with the reference operator (&)

 We usually can't predict what the address of something will be

int value = 5;
int *pointer;
pointer = &value; // pointer has value's address

 The reference operator doesn't let you do much
 You can get an address, but so what?
 Using the dereference operator, you can read and write the

contents of the address

int value = 5;
int* pointer;
pointer = &value;
printf("%d", *pointer); // prints 5
*pointer = 900; // value just changed!

 Java doesn't have pointers
 But it does have references
 Which are basically pointers that you can't do arithmetic on

 Like Java, pointers allow us to do aliasing
 Multiple names for the same thing

int wombat = 10;
int* pointer1;
int* pointer2;
pointer1 = &wombat;
pointer2 = pointer1;
*pointer1 = 7;
printf("%d %d %d", wombat, *pointer1, *pointer2);

 One of the most powerful (and most dangerous) qualities of
pointers in C is that you can take arbitrary offsets in memory

 When you add to (or subtract from) a pointer, it jumps the
number of bytes in memory of the size of the type it points to

int a = 10;
int b = 20;
int c = 30;
int* value = &b;
value++;
printf("%d", *value); // What does it print?

 An array is a pointer
 It is pre-allocated a fixed amount of memory to point to
 You can't make it point at something else

 For this reason, you can assign an array directly to a pointer

int numbers[] = {3, 5, 7, 11, 13};
int* value;

value = numbers;
value = &numbers[0]; // Exactly equivalent

value = &numbers; // What about this?

 Well, no, they aren't
 But you can still use array subscript notation ([]) to read and

write the contents of offsets from an initial pointer

int numbers[] = {3, 5, 7, 11, 13};
int* value = numbers;

printf("%d", value[3]); // prints 11
printf("%d", *(value + 3)); // prints 11
value[4] = 19; // changes 13 to 19

 What if you don't know what you're going to point at?
 You can use a void*, which is an address to…something!
 You have to cast it to another kind of pointer to use it
 You can't do pointer arithmetic on it
 It's not useful very often

char s[] = "Hello World!";
void* address = s;
int* thingy = (int*)address; // Uh-oh
printf("%d\n", *thingy);

 In general, data is passed by value
 This means that a variable cannot be changed for the function

that calls it
 Usually, that's good, since we don't have to worry about

functions screwing up our data
 It's annoying if we need a function to return more than one

thing, though
 Passing a pointer is equivalent to passing the original data by

reference

 Let's imagine a function that can change the values of its
arguments

void swapIfOutOfOrder (int *a, int *b)
{
if (*a > *b)

{
int temp = *a;
*a = *b;
*b = temp;

}
}

 You have to pass the addresses (pointers) of the variables
directly

 With normal parameters, you can pass a variable or a literal
 However, you cannot pass a reference to a literal

int x = 5;
int y = 3;
swapIfOutOfOrder(&x, &y); // Will swap x and y

swapIfOutOfOrder(&5, &3); // Impossible

 Memory can be allocated dynamically using a function called
malloc()
 Similar to using new in Java or C++
 #include <stdlib.h> to use malloc()

 Dynamically allocated memory is on the heap
 It doesn't disappear when a function returns

 To allocate memory, call malloc()with the number of bytes
you want

 It returns a pointer to that memory, which you cast to the
appropriate type

int* data = (int*)malloc(sizeof(int));

 It's common to allocate an array of values dynamically
 The syntax is exactly the same, but you multiply the size of

the type by the number of elements you want

int i = 0;
int *array = (int*)malloc (sizeof(int)*100);
for (i = 0; i < 100; ++i) // Initialize for fun
array[i] = i + 1;

 We can define a pointer to a struct variable
 We can point it at an existing struct
 We can dynamically allocate a struct to point it at

struct student bob;
struct student *studentPointer;
strcpy(bob.name, "Bob Blobberwob");
bob.GPA = 3.7;
bob.ID = 100008;
studentPointer = &bob;
(*studentPointer).GPA = 2.8;
studentPointer = (struct student*)malloc(sizeof(struct
student));

 As we saw on the previous slide, we have to dereference a struct
pointer and then use the dot to access a member

 This is cumbersome and requires parentheses
 Because this is a frequent operation, dereference + dot can be

written as an arrow (->)

struct student* studentPointer = (struct student*)
malloc(sizeof(struct student));

(*studentPointer).ID = 3030;

studentPointer->ID = 3030;

 If you pass a struct directly to a function, you are passing it by
value
 A copy of its contents is made

 It is common to pass a struct by pointer to avoid copying and
so that its members can be changed

void flip (struct point *value)
{

double temp = value->x;
value->x = value->y;
value->y = temp;

}

 One problem with malloc() is that the memory it allocates is filled with
garbage

 Like malloc(), calloc() allocates memory, but it also zeroes all of it
out

 Many programmers think it's safer to use calloc() in all situations
where you would use malloc()

 There's a slight syntax difference:
 calloc() takes two arguments: number of elements and size of each one

// malloc() version
int *array1 = (int*)malloc (sizeof(int)*100);
// equivalent calloc() version
int *array2 = (int*)calloc (100, sizeof(int));

 For a dynamic array, it can be useful to grow an existing chunk of memory if it's
too small

 You could allocate an entirely new, bigger chunk of memory, copy everything
from the old memory over, and then free the old memory
 This is what you have to do in Java

 C provides a slick function, realloc(), that does all of that for you
 Arguments: memory to resize, new size
 Return value: resized memory

if(size == capacity)
{
capacity *= 2;
array = realloc(array, capacity*sizeof(int));

}
array[size] = element;
++size;

 C isn't garbage collected like Java
 If you allocate something on the stack, it disappears when the function

returns
 If you allocate something on the heap, you have to deallocate it with
free()

 free() does not set the pointer to be NULL
 But you can (and should) afterwards

char *things = (char*)malloc (100*sizeof(char));
// Do stuff with things
free(things);
things = NULL;

 We have talked about
 Running processes
 Creating new processes with fork() and exec()
 Destroying processes
 Sending signals to processes

 In general, these processes are separate
 What happens in one process doesn't affect another

 However, there are times when one process needs to
communicate with another

 Interprocess communication (IPC) is an umbrella term for the
different ways these messages can be sent

 There are many IPC approaches, but they can all be
categorized as either message passing or shared memory

 Message passing:
 Sender prepares a message
 Sender makes a system call to request a data transfer
 Kernel copies the message into a buffer
 Receiver makes a system call to retrieve the data
 Receiver copies the message into its own memory

 Shared memory IPC is completely different
 The processes decide on a chunk of virtual memory that will

be used for IPC
 The processes make system calls to request that this memory

is shared
 Once it's shared, processes can read and write from shared

memory just like any other data in the program
 Mediation through the kernel isn't needed after the memory

is shared

 Message passing requires:
 A system call to read
 A system call to write
 Copying the message into kernel memory
 Copying the message into receiver memory

 Thus, sending lots of messages can cause a lot of overhead
 However, sending a small number of messages can be less

expensive than setting up shared memory
 Message passing naturally handles the problem of

synchronization
 Making sure that timing doesn’t corrupt memory

 It's computationally expensive to set up the shared memory
 But that's a one-time cost
 If two processes are sharing lots of messages, it can be more

efficient to use a shared memory system
 Perhaps the more significant problem with shared memory is

synchronization
 Processes reading and writing the same memory can leave the memory in

an inconsistent state
 If one process executes x += 100 while another executes x -= 100,

the result could be the correct x or the incorrect x + 100 or x – 100
 Tools must be used to guarantee synchronization

 Although all IPC techniques fall under the message passing or
the shared memory model, there are other ways to categorize
them:
 For data exchange or purely for synchronization
 As a stream or bytes or data with more structure
 For local communication or for networked communication

 Note: People sometimes use the term "shared memory" to
refer only to the technique using shm_open() and not
memory-mapped files

 Using the categories from the previous slide, we can list all of the IPC techniques that will
be covered in this class

 We talked about signals last week, which are a form of IPC but very limited
 We'll cover sockets when we talk about networking

Technique Model Purpose Granularity Network

Pipe/FIFO Message passing Data exchange Byte stream Local

Socket Message passing Data exchange Either Either

Message queue Message passing Data exchange Structured Local

shm() Shared memory Data exchange None Local

Memory-mapped file Shared memory Data exchange None Local

Signal Message passing Synchronization None Local

Semaphore Message passing Synchronization None Local

 More on IPC
 Pipes
 FIFOs

 Keep working on Project 1
 Due Friday by midnight!

 Read section 3.3

	COMP 3400
	Last time
	Questions?
	Project 1
	Events and Signals
	Common signals
	Sending signals in a program
	Pointers
	Pointers
	Pointers
	Declaration of a pointer
	Reference operator
	Dereference operator
	Aliasing
	Pointer arithmetic
	Arrays are pointers too
	Surprisingly, pointers are arrays too
	void pointers
	Functions that can change arguments
	Example
	How do you call such a function?
	malloc()
	Allocating arrays
	Pointers to structs
	Arrow notation
	Passing structs to functions
	calloc()
	realloc()
	free()
	Interprocess Communication
	Interprocess communication
	Message passing
	Shared memory
	Pros and cons of message passing
	Pros and cons of shared memory
	The IPC zoo
	IPC taxonomy
	Upcoming
	Next time…
	Reminders

